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Abstract

We study the fair and efficient allocation of a set of indivisible goods among agents,
where each good has several copies, and each agent has an additively separable concave
valuation function with a threshold. These valuations capture the property of diminishing
marginal returns, and they are more general than the well-studied case of additive valua-
tions. We present a polynomial-time algorithm that approximates the optimal Nash social
welfare (NSW) up to a factor of e1/e ≈ 1.445. This matches with the state-of-the-art
approximation factor for additive valuations. The computed allocation also satisfies the
popular fairness guarantee of envy-freeness up to one good (EF1) up to a factor of 2 + ε.
For instances without thresholds, it is also approximately Pareto-optimal. For instances
satisfying a large market property, we show an improved approximation factor. Lastly, we
show that the upper bounds on the optimal NSW introduced in Cole and Gkatzelis (2018)
and Barman et al. (2018) have the same value.

1. Introduction

Fair division of (scarce) resources is a fundamental problem in various multi-agent settings
where the goal is to distribute resources among agents in a way that is “fair” (no agent is
significantly unhappy with her allocation) and “efficient” (there is no other “fair” alloca-
tion that achieves a better total happiness). Mentions of such problems date back to the
Bible (land division between Abraham and Lotte) and ancient Greek mythology (Hesios’s
Theogeny1, dating back 2800 years). Even today, the problems in this field are directly
motivated from several real-life scenarios like dividing inheritance property, splitting rent
among tenants, splitting taxi fare among passengers, dividing household tasks/chores among

1. Prometheus and Zeus argued about how to share an ox, and agreed finally on the protocol that
Prometheus cut the ox in two pieces, then Zeus chooses his piece.
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all the tenants and so on; see Spliddit2 and Fairoutcomes3 for applications of fair division
protocols in real-life scenarios. With the advent of the Internet, the development of online
platforms and substantial growth in computational power, there has been a significant in-
terest in economics and computer science to design computationally tractable protocols for
fair allocation of resources.

In a standard problem instance of (discrete) fair division, there are a set N of agents and
a set M of goods. Each agent i ∈ N has a valuation function ui : 2M → R≥0, representing
agent i’s utility for each subset of goods. The goal is to distribute the goods in a fair and
efficient manner. Several problem variants have been studied, depending on the type of
goods (divisible or indivisible), the type of valuation functions, the fairness criteria, and the
measures of efficiency. A detailed discussion on all of them is beyond the scope of this paper.
We refer readers to Moulin (2019) for a summary of important results on fair division.

In this paper, we focus on indivisible goods, while each good can have several copies.
The agents have capped additively separable concave (CASC) valuation functions, which is
a generalization of the valuation functions studied in Anari et al. (2018) and Garg et al.
(2018).4 Our measure of efficiency is Nash social welfare, which is the geometric mean of the
utilities attained by all agents. The fairness notion under consideration is Envy-Freeness up
to one good (EF1), a well-known relaxation of envy-freeness in the settings with divisible
goods. We now elaborate each of the above notions.

Indivisible vs. Divisible Goods. There has been substantial progress in the direction of
fairly allocating divisible goods. We briefly highlight some important results and concepts
in this setting. Competitive equilibrium with equal incomes (CEEI) has emerged as the best
mechanism of allocating goods. In this mechanism, a virtual market is created comprising
of the same set of agents and goods, while each agent has the same purchasing power (say
$1). The goal is to determine market clearing prices for the goods such that demand equals
supply, i.e., a set of prices for the goods and an allocation where each agent is allocated the
bundle that maximizes her utility under the spending constraint of $1, and all the goods
are completely allocated. This allocation is envy-free (no agent strictly prefers the bundle
of any other agent to her own) and Pareto-optimal (there is no allocation that increases
the utility of any agent without decreasing the utility of some other agent). The early
existence proofs of such prices and allocations involved a fixed point formulation. Eisenberg
and Gale (1959) showed that when agents have linear valuation functions, then CEEI can
be determined by a convex program that maximizes the geometric mean of the valuations,
also known as the Nash social welfare. There are several algorithms that solve this convex
program in polynomial time (Devanur et al., 2008, Jain and Vazirani, 2010, Orlin, 2010,
Végh, 2012).

Although practically relevant, the systematic study of fair division of indivisible goods
is more recent, probably because the indivisible setting poses notable challenges. Classical
fairness notions like envy-freeness cannot always be guaranteed. Furthermore, maximiz-
ing efficiency objectives like the Nash social welfare is APX-hard (Lee, 2017). Despite

2. http://www.spliddit.org/

3. https://fairproposals.com/

4. Anari et al. (2018) named the valuation functions “separable piecewise linear concave” (SPLC), a name
borrowed from the setting with divisible goods. However, “piecewise linear” is clearly associated to the
divisible setting. This is why we rename them for indivisible setting as “additively separable concave”.
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these challenges, algorithmic ideas for the divisible setting have proved useful in designing
polynomial-time algorithms for the indivisible setting, especially when we want to compute
fair and efficient allocations for agents with additive valuation functions. In this paper, we
extend these results to a setting where agents have much more general valuation functions.

Capped Additively Separable Concave (CASC) Valuation Functions. In our set-
ting, there is a set M of m distinct goods. For each good j ∈ M , there are kj ≥ 1 copies;
each copy is indivisible. Each agent has a valuation function which is more general than
additive valuation functions. Our valuation functions primarily capture the property of di-
minishing marginal utility with every additional copy of a good. We first define additively
separable concave (ASC) valuation functions. Given an agent i ∈ N and a good j ∈M , we
define the marginal utility of the `th copy of good j to agent i as ui,j,`. We assume that
ui,j,1 ≥ ui,j,2 ≥ . . . ≥ ui,j,kj to capture the standard economic assumption of diminishing
marginal returns. The total utility an agent i derives from r copies of j is

∑
1≤`≤r ui,j,`.

The total utility an agent i derives from her bundle xi is additively separable over all the
goods:

ui(xi) =
∑
j∈M

∑
1≤`≤m(j,xi)

ui,j,` ,

where m(j, xi) is the number of copies of good j in xi. A capped ASC (CASC) valuation
function is simply an ASC valuation function with a cap, i.e., the valuation function of
agent i is of the form

ūi(xi) = min(ci, ui(xi)) . (1)

We note that CASC is more general than ASC by setting ci ≥
∑

j∈M
∑kj

`=1 ui,j,`. They
are a special case of submodular functions but incomparable to gross substitutes functions,
which are studied frequently especially in the special case of capped additive functions;
see Dobzinski et al. (2021), Feldman et al. (2016), Garg et al. (2018), Roughgarden and
Talgam-Cohen (2015).

Capped valuation function imposes that an agent’s valuation cannot grow beyond a par-
ticular threshold, irrespective of the number of distinct goods her bundle contains. Capped
valuation functions capture non-separable diminishing marginal returns, i.e., once an agent
values her current bundle at a capped threshold, her utility will not increase even if she gets
additional copies of the goods of which she has very few copies in her bundle.

Fairness: Envy-Freeness up to One Good (EF1). A quintessential notion of fairness
is envy-freeness. An allocation x = 〈x1, x2, . . . , xn〉 is said to be envy-free if for every pair
of agents i and k we have ui(xi) ≥ ui(xk), i.e., each agent prefers her own bundle at least
as much as the bundle of any other agent. While envy-free allocations always exist when
the goods are divisible, they rarely exist for indivisible goods. For illustration, consider the
case with two agents and a single valuable indivisible good. Clearly, the person who does
not get the good will envy the person who does.

Over the last decade, several interesting relaxations of envy-freeness have been formu-
lated. One of the most popular ones is called Envy-Freeness up to one good (EF1) (Budish,
2011, Lipton et al., 2004), where no agent envies another one after the removal of some single
good in the other agent’s bundle. Formally, an allocation x = 〈x1, x2, . . . , xn〉 is said to be
EF1 if for every pair of agents i and k, there is some g ∈ xk such that ui(xi) ≥ ui(xk \ {g}).
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Lipton et al. (2004) showed that EF1 allocations always exist, even when agents have much
more general valuation functions than additive ones.5

While an EF1 allocation always exists, an EF1 allocation can be severely unsatisfactory
in term of efficiency. Consider the following example with two agents and two goods. Each
agent has an additive valuation, where u11 = 1, u12 = 0, u21 = 0 and u22 = 1. The allocation
where agent 1 gets good 2 and agent 2 gets good 1 is clearly EF1. However, this allocation
is unsatisfactory, as there is another envy-free allocation where both agents have higher
valuations: Agent 1 gets good 1 and agent 2 gets good 2. This example demonstrates that
EF1 alone may lead to unsatisfactory allocations. This brings us to the desirable property
of efficiency.

Efficiency: Nash Social Welfare. Efficiency of an allocation is a measure of how much
total happiness (or equivalently, welfare) the allocation achieves. A classical measure of
efficiency is social welfare, which is the sum of utilities of the agents:

∑
i∈N ui(xi). However,

social welfare is not scale-invariant and therefore incompatible with the fairness notions of
envy-freeness and its relaxations. For instance, consider two agents 1 and 2 and a set of
goods M , and all goods are valuable to each agent. Suppose u1(g) � u2(g) for all g ∈ M .
Any allocation that achieves a good approximation of the optimum social welfare must
allocate most of the goods to agent 1 and very few to agent 2. Clearly, this allocation is far
from satisfying envy-freeness or any of its relaxations.

There are alternative measures of efficiency that are (more) compatible with envy-
freeness such as Pareto-optimality. An allocation x = 〈x1, x2, . . . xn〉 is said to be Pareto-
optimal if there does not exist another allocation x′ = 〈x′1, x′2, . . . , x′n〉, such that ui(x

′
i) ≥

ui(xi) for all i ∈ N , with a strict inequality for at least one agent. The question then be-
comes how to obtain an EF1 allocation that is also Pareto-optimal. Caragiannis et al. (2016)
showed that when the agents have additive valuation functions, any allocation that max-
imizes the Nash social welfare (NSW) is guaranteed to be both EF1 and Pareto-optimal,
where the NSW of an allocation x is the geometric mean of the utilities attained by all
agents. In our setting, when the agents have CASC valuation functions in Equation (1),
the NSW of an allocation x is

NSW(x) =

(∏
i∈N

ūi(xi)

)1/n

. (2)

We note that the result of Caragiannis et al. (2016) does not generalize to ASC or CASC
valuation functions: when agents have such valuation functions, a NSW-optimal allocation
may not be EF1, although it is still Pareto-optimal.

The above discovery naturally motivates the problem of computing NSW-optimal allo-
cations. Lee (2017) showed that this problem is APX-hard for additive valuation functions.
Hence, attention has shifted to designing polynomial-time algorithms that compute ap-
proximately NSW-optimal allocations for additive and more general valuation functions;
see Anari et al. (2017, 2018), Barman et al. (2018, 2020), Chaudhury et al. (2021), Cole
and Gkatzelis (2018), Cole et al. (2017), Garg et al. (2020, 2021), Li and Vondrák (2021),
McGlaughlin and Garg (2020).

5. In fact, this holds for any weakly monotone valuation functions, i.e., ui(xi ∪{g}) ≥ ui(xi) for all xi ⊆M
and g ∈M .
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In this work, we present a polynomial-time algorithm that computes an approximately
NSW-optimal allocation, while the allocation also approximately satisfies Pareto-optimality
and EF1, for instances where the agents have CASC valuation functions. We proceed to
state our main contributions.

1.1 Our Contribution

Our main contribution is a polynomial-time algorithm to compute an allocation x that is
e1/e ≈ 1.445-approximation of the optimal NSW when the agents have CASC valuation
functions. The most relevant prior works for our setting are Anari et al. (2018), Barman
et al. (2018), Garg et al. (2018). We improve upon them in terms of the family of valuation
functions and/or the approximation guarantee. Anari et al. (2018) presented a polynomial-
time algorithm that achieves a 2.718-approximation when the agents have ASC valuation
functions. Garg et al. (2018) presented a polynomial-time algorithm that achieves a 2.414-
approximation when the agents have capped additive valuation functions. Barman et al.
(2018) presented a polynomial-time algorithm that achieves a 1.445-approximation when
the agents have additive valuation functions; moreover, the allocation computed by their
algorithm is EF1 and Pareto-optimal.

The allocation x our algorithm computes is also approximately EF1, i.e., the allocation
is 1/(2 + γ)-EF1 such that for any two agents i and k, ūi(xi) ≥ 1/(2 + γ) · ūi(xk \ {g}) for
some g ∈ xk for any given constant γ > 0. Furthermore, x is also (1 + γ/4)-approximately
Pareto-optimal when the agents have uncapped valuation functions, i.e., there does not
exist another allocation x′ = 〈x′1, x′2, . . . x′n〉 such that ui(x

′
i) ≥ (1 + γ/4) · ui(xi) for any

agent i. The precise statement of our main result is as follows.

Theorem 1. Given a set of agents with CASC valuation functions, a set of goods where
each good has several copies, and a constant γ ∈ (0, 1], there is a polynomial-time algorithm
that computes an allocation x = 〈x1, x2, . . . , xn〉, such that

• (1+γ/4) ·ee−1/(1+γ) ·NSW(x) ≥ NSW(xopt) where xopt is an allocation that maximizes
the Nash social welfare;

• x is 1/(2 + γ)-EF1; and

• x is (1 +γ/4)-approximately Pareto-optimal when the agents have uncapped valuation
functions.

When γ ↘ 0, the approximation guarantee for NSW approaches e1/e ≈ 1.445, while the
approximation factors for EF1 and Pareto-optimality approach 1/2 and 1 respectively.

In addition to our main result, we present an improved approximation guarantee for the
NSW under a large-market condition. Roughly speaking, a market is sufficiently large when
there are a large number of copies of goods, and no single copy yields a significant utility
to any agent in the market. In this case, the approximation guarantee can be improved to
a ratio close to 1.

Finally, on a more technical side, we show that the upper bounds on the optimal NSW
proved by Cole and Gkatzelis (2018) (CG-bound) and by Barman et al. (2018) (BKV-bound)
are equal.

A preliminary version of this paper appeared in FSTTCS 2018 (Chaudhury et al., 2018).
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1.2 Our Techniques

The backbone of our algorithm comes from the algorithm for additive valuation functions
by Barman et al. (2018). We will refer to their work as BKV for the rest of this paper.
The algorithm iteratively updates the prices and allocations of the goods, until they satisfy
a property called price envy-freeness up to one good (p-EF1), which resembles the market
clearing condition in the setting with divisible goods. To generalize this idea to CASC
valuation functions, we use the notions of maximum bang per buck (MBB) ratio and total
spending for such valuation functions, which were first proposed by Anari et al. (2018). We
also need to make crucial modifications to the BKV algorithm; see Remark 2. Introducing
caps into agents’ valuations poses new challenges, since we must distinguish between capped
agents (agents that attain their cap utilities) and uncapped agents in the algorithm and its
analysis.

1.3 Roadmap of This Paper

In Section 2, we specify the model and formally define the problem, we present our ap-
proximation algorithm, and we discuss the key components of the algorithm. In Section 3,
we present the analysis of the algorithm. In Section 4, we present several extended results
about our algorithm. In Section 4.1, we show that our analysis for the NSW-approximation
is tight, by presenting instance for which the algorithm outputs an allocation that is worse
than 1/1.44 times the optimal. In Section 4.2, we present a certificate which convinces
end-users of the algorithm the output is indeed approximating the optimal allocation. In
Section 4.3, we explain why we settle with 1/2-EF1 by presenting instances for which the
algorithm outputs are not EF1. In Section 4.4, we present a large-market condition that
implies a better approximation guarantee of the optimal NSW. Finally, in Section 5, we
show that the CG-bound and the BKV-bound are equal.

2. Algorithm

In this section, we present an algorithm that approximately maximizes the NSW defined
in Equation (2), where ūi is the CASC valuation function of agent i defined in Equation
(1). Observe that when the copies of goods are indivisible, the valuation function ūi does
not change if we replace any ui,j,` by min{ui,j,`, ci}. Thus, we may assume without loss of
generality that ui,j,` ≤ ci.

Let 1 < r ≤ 5/4. For every non-zero utility ui,j,`, let vi,j,` be the next larger power of
r. For zero utilities vi,j,` and ui,j,` are the same. Similarly, for the cap ci, let di be the
next larger power of r. Consider the rounded problem where each agent i has the rounded
utilities vi,j,` and rounded cap di. By the lemma below, it suffices to solve the rounded
problem with a good approximation guarantee.

Lemma 1. Let x approximate the NSW for the rounded problem up to a factor of κ. Then
x approximates the NSW for the original problem up to a factor κr.

Proof. Let xopt be an optimal allocation for the original problem. We write NSW(xopt , u, c)
for the Nash social welfare of the allocation xopt with respect to utilities u and caps c.
Define NSW(x, u, c), NSW(xopt , v, d), and NSW(x, v, d) analogously. We need to bound
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NSW(xopt , u, c)/NSW(x, u, c). Since u ≤ v and c ≤ d componentwise, NSW(xopt , u, c) ≤
NSW(xopt , v, d). Since x approximates the NSW for the rounded problem up to a factor κ,
NSW(xopt , v, d) ≤ κ·NSW(x, v, d). Since v ≤ ru and d ≤ rc componentwise, NSW(x, v, d) ≤
r ·NSW(x, u, c). Thus

NSW(xopt , u, c)

NSW(x, u, c)
≤ κ ·NSW(x, v, d)

NSW(x, v, d)/r
= κr.

Barman et al. (2018) presented an elegant approximation algorithm for the case of a
single copy per good and no utility caps. We generalize their approach. The algorithm uses
a parameter ε ∈ (0, 1/4], and r = 1 + ε. Due to Lemma 1, we assume rounded utilities, i.e.,
all nonzero utilities and caps are rounded up to powers of r.

The algorithm updates an integral allocation x, a price pj for each good j, and a max-
imum bang per buck (MBB) ratio αi for each agent i. It is an ascending price algorithm.
Its output is an integral allocation and a price vector which satisfy 4ε-price-envy-freeness
up to one good (4ε-p-EF1), a property specified in Definition 1 below. As we shall see in
Section 3, this property implies that the allocation achieves the approximation guarantee
promised in Theorem 1.

2.1 Three Invariants

Throughout the algorithm, we maintain three invariants. Recall that there are kj ≥ 1 copies
of good j, and m(j, xi) is the number of copies of good j in xi.

Invariant 1. All copies of all goods are always allocated to the agents. In other words, the
allocation x always satisfy

∑
im(j, xi) = kj for each good j.

In the BKV algorithm when there is one copy per good, the MBB ratio αi = ui,j/pj
whenever (the single copy of) good j is assigned to i, and αi ≥ ui,`/p` for all goods `, i.e.,
αi is the maximum utility per unit of money that agent i can get at the given prices. In
our case of multiple copies per good, we adopt a generalization described below. For the
sake of presentation, we let ui,j,0 = +∞ and ui,j,kj+1 = 0 for each agent i and good j.

Invariant 2. The prices and MBB ratios are related through the following inequalities:

ui,j,m(j,xi)+1

pj
≤ αi ≤

ui,j,m(j,xi)

pj
. (3)

Invariant 2 implies that if ui,j,`/pj > αi, then at least ` copies of j are allocated to agent
i. Also, if ui,j,`/pj < αi, then less than ` copies of j are allocated to agent i. Note that if
αi is equal to its upper bound in (3), we may take one copy of good j away from i without
violating the inequality, as the upper bound becomes the new lower bound. Similarly, if αi
is equal to its lower bound in (3), we may assign an additional copy of good j to i without
violating the inequality as the lower bound becomes the new upper bound.

Since (3) must hold for every good j, αi must lie in the intersection of the intervals for
the different goods j, i.e.,

max
j

ui,j,m(j,xi)+1

pj
≤ αi ≤ min

j

ui,j,m(j,xi)

pj
.
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The value of bundle xi for agent i is given by

Pi(xi) =
ui(xi)

αi
=

1

αi

∑
j

∑
1≤`≤m(j,xi)

ui,j,` . (4)

Remark 1. In case of one copy per good, Pi(xi) = ui(xi)/αi =
∑

j∈xi pj is the total price
of the goods in the bundle. We reuse the letter P when there are multiple copies per good,
although Pi(xi) = (1/αi) ·

∑
j

∑
1≤`≤m(j,xi)

ui,j,` is no longer the total price of the goods in
the bundle. Clearly, the MBB ratio can differ for different goods and for different copies of
the same good in an agent’s bundle. The Pi(xi) captures the cost of xi if we change the
prices so that the MBB ratio of each copy of every good in xi is the same as αi, the lowest
MBB ratio among all copies of all goods in xi. Clearly, Pi(xi) ≥

∑
jm(j, xi) · pj .

The notions αi and Pi(xi) in (3) and (4) are inspired by Anari et al. (2018). We say
that αi is equal to the upper bound for the pair (i, j) if αi is equal to its upper bound in
(3), and that αi is equal to the lower bound for the pair (i, j) if αi is equal to its lower
bound in (3). An agent i is capped if ui(xi) ≥ ci and is uncapped otherwise.

The entire algorithm is given in Algorithm 1. It starts with a greedy assignment. For
each good j, it assigns each copy to the agent that values it most. The price of each good
is set to the utility of the assignment of its last copy, and all MBB ratios αi are set to one.
This guarantees (3) for every pair (i, j). Also, due to the rounded utilities, all initial prices
and MBB ratios are powers of r.

Invariant 3. All prices and MBB ratios are powers of r. Only the final price increase (line
24 of Algorithm 1, when β3 ≤ min{β1, β2, β4}) may destroy this invariant.

2.2 Discussion and Definitions

To proceed, we need to define a few new notions. Recall that xi is a multi-set. In the multi-
set xi− j, the number of copies of good j is reduced by one, i.e., m(j, xi− j) = m(j, xi)−1.

Definition 1 (least spending uncapped agent, ε-p-EF1). An agent i is a least spending
uncapped agent if she is uncapped and Pi(xi) ≤ Pk(xk) for every other uncapped agent k.
An agent i ε-p-envies agent k up to one good if Pk(xk − j) > (1 + ε) · Pi(xi) for every
good j ∈ xk. An allocation is ε-p-envy-free up to one good (ε-p-EF1) if no uncapped agent
ε-p-envies another agent up to one good, i.e., for every uncapped agent i and every other
agent k, there is a good j ∈ xk such that Pk(xk − j) ≤ (1 + ε)Pi(xi).

To compute an 4ε-p-EF1 allocation, we want to make updates that eventually eliminate
any 4ε-p-envy from any uncapped agent. To this end, the algorithm is designed to do either
of the following two steps repeatedly:

(i) Remove a copy of good from an agent k who is ε-p-envied by a least spending uncapped
agent i, in hope of easing the envy to agent k from agent i.6 To do this while
maintaining the three invariants, it turns out that we need to re-assign a sequence of
copies of goods. We call this a “swap” operation, which is implemented in lines 13–16
of Algorithm 1.

6. Note that Pk(xk − j) = Pk(xk)− uk,j,m(j,xk)/αk < Pk(xk).
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Algorithm 1: Approximate the NSW for Capped Additively Separable Concave
Valuations

Input : Fair Division Problem given by utilities ui,j,`, i ≤ n, j ≤ m, ` ≤ kj , utility caps
ci, and approximation parameter ε ∈ (0, 1/4]. Let r = 1 + ε. Non-zero ui,j,`’s and
ci’s are powers of r.

Output: Price vector p and a 4ε-p-EF1 integral allocation x.
1 ui,j,` ← min(ci, ui,j,`),∀i, j, `
2 for j ∈M do
3 for ` ∈ [kj ] in increasing order do
4 assign the `-th copy of j to i0 = argmaxi ui,j,m(j,xi)+1

5 Set pj ← ui0,j,m(j,xi0
), where i0 is the agent to which the kj-th copy of j was assigned

6 αi ← 1,∀i ∈ N
7 repeat
8 if allocation x is ε-p-EF1 then
9 break from the loop and terminate

10 Let i be a least spending uncapped agent
11 Perform a BFS in the tight graph starting at i
12 if the BFS-search discovers an improving path starting in i, let

P = (i = a0, g1, a1, . . . , gh, ah) be a shortest such path then
13 Set `← h
14 while ` > 0 and Pa`

(xa`
− g`) > (1 + ε)Pi(xi) do

15 remove g` from xa`
and assign it to a`−1

16 `← `− 1

17 else
18 Let S be the set of goods and agents that can be reached from i in the tight graph
19 β1 ← mink∈S; j 6∈S αk/(uk,j,m(j,xk)+1/pj) // add a good to S
20 β2 ← mink 6∈S; j∈S (uk,j,m(j,xk)/pj)/αk // add an agent to S

21 β3 ← 1
r2Pi(xi)

maxk 6∈S minj∈xk
Pk(xk − j) // i is happy

22 β4 ← rs, where s is the smallest integer such that rs−1 ≤ Ph(xh)/Pi(xi) < rs and h
is the least spending uncapped agent outside S // new least spender

23 β ← min(β1, β2,max(1, β3), β4)
24 multiply all prices of goods in S by β and divide all MBB ratios of agents in S by β
25 if β3 ≤ min(β1, β2, β4) then
26 break from the loop and terminate

27 until False

(ii) Raise the prices of some goods. This will lead to a drop of αi and thus a raise of
Pi(xi), which makes agent i less likely to ε-p-envy another agent. To do this while
maintaining the three invariants, it turns out that the MBB ratios of some other
agents who are not ε-p-envied by agent i will be reduced simultaneously. We call this
a “price increase” operation, which is implemented in lines 18–24 of Algorithm 1.

We will show that by repeating steps (i) and (ii) polynomially many times, a 4ε-p-
EF1 allocation is reached. In order to execute step (i) while maintaining Invariant 2, the
following two notions are helpful.
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= at upper bound= good

= agent = at lower bound
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j1i i1 j2 jh ih

Figure 1: An improving path. Agents and goods alternate on the path and the path starts
and ends with an agent. For the solid edges (j, i), αi is at its upper bound for
the pair (i, j) and for the dashed edges (i, j), αi is at its lower bound for the pair
(i, j).

Definition 2 (tight graph). A tight graph is a directed bipartite graph with the agents on
one side and the goods on the other side. We have a directed edge (i, j) from agent i to good
j if αi = ui,j,m(j,xi)+1/pj, i.e., αi is at its lower bound for the pair (i, j). We have a directed
edge (j, i) from good j to agent i if αi = ui,j,m(j,xi)/pj, i.e., αi is at its upper bound for the
pair (i, j). Note that necessarily m(j, xi) ≥ 1 in the latter case, since otherwise j does not
impose an upper bound for αi.

Intuitively, a directed edge (i, j) from agent i to good j means we can allocate one more
copy of good j to xi without violating Invariant 2. A directed edge (j, i) from good j to
agent i means we can remove one copy of good j from xi without violating Invariant 2.

Definition 3 (improving path). An improving path starting at an agent i is a simple path
P = (i = a0, g1, a1, . . . , gh, ah) in the tight graph starting at i and ending at another agent
ah such that Pah(xah − gh) > (1 + ε)Pi(xi) and Pa`(xa` − g`) ≤ (1 + ε)Pi(xi) for 1 ≤ ` < h;
see Figure 1 for an illustration.

Let agent i be a least spending uncapped agent. We perform a breadth-first search
(BFS) in the tight graph starting from i. If the BFS discovers an improving path starting
from i, we use the shortest such path to improve the allocation. Note that if agent i ε-p-
envies some agent that is reachable from i in the tight graph, then the BFS will discover
an improving path.

In the main loop, we distinguish cases according to whether the BFS discovers an im-
proving path starting at i or not. In the former case, we perform a swap operation; and in
latter case, we perform a price increase operation. Next, we discuss the two operations.

2.3 Swap Operations

Suppose the BFS discovers the improving path P = (i = a0, g1, a1, . . . , gh, ah). We take gh
away from ah and assign it to ah−1. If we now have Pah−1

(xah−1
+gh−gh−1) ≤ (1+ε)Pi(xi)

we stop. Otherwise, we take gh−1 away from ah−1 and assign it to ah−2. If we now have
Pah−2

(xah−2
+ gh−1 − gh−2) ≤ (1 + ε)Pi(xi) we stop. Otherwise, we take gh−2 away from

ah−2 and assign it to ah−3. We continue in this way until we stop or assign g1 to a0. In
other words, let h′ < h be maximum such that Pah′ (xah′ + gh′+1− gh′) ≤ (1 + ε)Pi(xi). If h′

exists, then we take a copy of g` away from a` and assign it to a`−1 for h′ < ` ≤ h. If h′ does
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not exist, we do so for 1 ≤ ` ≤ h. Let us call the above a sequence of swaps. We summarize
the above discussions in the following lemma, which follows easily from Definition 3.

Lemma 2. Consider an execution of lines 13–16 and let h′ be the final value of ` (this agrees
with the definition of h′ in the preceding paragraph). Let x′ be the resulting allocation. Then
x′` = x` for 0 ≤ ` < h′, x′h′ = xh′ + gh′+1, x′` = x` + g`+1 − g` for h′ < ` < h, and
x′h = xh − gh. Also,

1. Pah(xah) ≥ Pah(x′ah) > (1 + ε)Pi(xi);

2. if h′ ≥ 1, then Pah′ (x
′
ah′
− gh′) = Pah′ (xah′ + gh′+1 − gh′) ≤ (1 + ε)Pi(xi);

3. if h′ = 0, then Pa0(x′a0 − g1) = Pa0(xa0) ≤ (1 + ε)Pi(xi);

4. for h′ < ` < h, Pa`(x
′
a`

) = Pa`(xa` + g`+1 − g`) > (1 + ε)Pi(xi) and Pa`(x
′
a`
− g`+1) =

Pa`(xa` − g`) ≤ (1 + ε)Pi(xi);

5. for 0 ≤ ` < h′, Pa`(x
′
a`
− g`) = Pa`(xa` − g`) ≤ (1 + ε)Pi(xi).

If agent i is still the least spending uncapped agent after an execution of lines 13–16, we
search for another improving path starting from i. We will show below that agent i can stay
as the least spending agent for at most n2m iterations. Intuitively, this holds because for
any agent (factor n) and any fixed length shortest improving path (factor n), we can have
at most m iterations for which the shortest improving path ends in this particular agent.

2.4 Price Increase Operations

We turn to the case when the BFS does not discover an improving path starting at i. This
implies that agent i does not ε-p-envy any agent that she can reach in the tight graph. We
then raise some prices and reduce some MBB ratios. Let S be the set of agents and goods
that can be reached from i in the tight graph.

Lemma 3. If a good j belongs to S and αk is at its upper bound for the pair (k, j), then
k belongs to S. If an agent k belongs to S and αk is at its lower bound for the pair (k, j),
then j belongs to S.

Proof. Consider any good j ∈ S. Since j belongs to S, there is an alternating path starting
in i and ending in j. If the path contains k, k belongs to S. If the path does not contain k,
we can extend the path from j to k. In either case, k belongs to S.

Consider any agent k ∈ S. Since k belongs to S, there is an alternating path starting
in i and ending in k. If the path contains j, j belongs to S. If the path does not contain j,
we can extend the path from k to j. In either case, j belongs to S.

We multiply all prices of goods in S and divide all MBB ratios of agents in S by a
common factor β > 1. What is the effect?

• Let uk,j,m(j,xk)+1/pj ≤ αk ≤ uk,j,m(j,xk)/pj be the inequality (3) for the pair (k, j).
The endpoints do not move if j 6∈ S and are divided by β for j ∈ S. Similarly, αk
does not move if k 6∈ S and are divided by β if k ∈ S. So in order to preserve the
inequality, we must have: If αk is equal to the upper endpoint and pj moves, i.e.,
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j ∈ S, then αk must also move. If αk is equal to the lower endpoint and αk moves
then pj must also move. Both conditions are guaranteed by Lemma 3.

• If k and j are both in S, then αk and the endpoints of the interval for (k, j) move in
sync. So agents and goods reachable from i in the tight graph stay reachable.

• If k 6∈ S, there might be a j ∈ S such that αk becomes equal to the right endpoint of
the interval for (k, j). Then k is added to S.

• If k ∈ S, there might be a j 6∈ S such that αk becomes equal to the left endpoint of
the interval for (k, j). Then j is added to S.

• For agents in S, Pk(xk) is multiplied by β. For agents outside S, Pk(xk) stays un-
changed.

How is the common factor β chosen? There are four limiting events. Either S grows
and this may happen by the addition of a good (factor β1) or an agent (factor β2); or Pi(xi)
comes close to the largest value of minj∈xk Pk(xk − j) for any other agent (factor β3), or
Pi(xi) becomes larger than Ph(xh) for some uncapped agent h outside S (factor β4). Since
we want prices to stay powers of r, β4 is chosen as a power of r. The factor β3 might be
smaller than one. Since we never want to decrease prices, we take the maximum of 1 and
β3.

Lemma 4 (Invariant 3). Prices and MBB ratios are powers of r, except maybe at termi-
nation.

Proof. This is true initially, since prices are utility values and utility values are assumed to
be powers of r, and since MBB ratios are equal to one. If prices and MBB ratios are powers
of r before a price update, β1, β2, and β4 are powers of r. Thus prices and MBB ratios are
after the price update, except maybe when the algorithm terminates.

We next show that the algorithm terminates with an allocation that is almost price-
envy-free up to one good.

Lemma 5. Suppose ε ≤ 1/4, then upon termination of the algorithm, x is a 4ε-p-EF1
allocation.

Proof. If the algorithm terminates at line 9, the lemma holds trivially. Otherwise, it termi-
nates after an execution of lines 18–24 with a final price increase, and β3 ≤ min(β1, β2, β4).
Suppose agent i is the least spending uncapped agent during this last execution. Let
p, q denote the price vectors just before/after the final price increase respectively, and
Pk(xk), Qk(xk) denote the values of agent k just before/after the final price increase re-
spectively. Let h be the least spending uncapped agent after the increase; h = i is possible.

We first show that Qi(xi) ≤ rQh(xh). This is trivially true if h = i. If h 6= i, then we
must have h /∈ S. Since the price increase is limited by β4, we have

Qi(xi) = βPi(xi) ≤ β4Pi(xi) = r · rs−1 · Pi(xi) ≤ rPh(xh) = rQh(xh).

In either case, we have Qi(xi) ≤ rQh(xh). Moreover, Qh(xh) ≤ Qi(xi) because h is a least
spending uncapped agent after the price increase.
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It suffices to show that agent h does not ε-q-envies any other agent k. If k ∈ S, then
agent i does not ε-p-envies agent k. Since the final price increase changes the values of these
two agents by the same factor, agent i does not ε-q-envies agent k. Thus, there exists a
good j ∈ xk such that

Qk(xk − j) ≤ (1 + ε)Qi(xi) ≤ (1 + ε) · rQh(xh) = r2Qh(xh).

If k 6∈ S, then by the definition of β3, there exists a good j ∈ xk such that

Qk(xk − j) = Pk(xk − j) ≤ β3r
2Pi(xi) = r2Qi(xi) ≤ r3Qh(xh).

Thus we are returning an allocation that is (r3 − 1)-q-EF1. We are done by noting that
r3 = (1 + ε)3 ≤ (1 + 4ε) for ε ≤ 1/4.

Remark 2. We point out the differences between our algorithm and the BKV algorithm.
Our definition of improving path is more general than theirs since it needs to take into
account that the number of copies of a particular good assigned to an agent may change.
For this reason, we need to maintain the MBB ratio explicitly. In the BKV algorithm, the
MBB ratio of agent i is equal to the maximum utility to price ratio maxj ui,j/pj and only
MBB goods can be assigned to an agent. As a consequence, if a good belongs to S, the
agent owning it also belongs to S. In price changes, there is no need for the quantity β2. In
the definition of β3, we added an additional factor r2 in the denominator. We cannot prove
polynomial running time without this factor. Finally, we start the search for an improving
path from the least spending uncapped agent but not from the least spending agent.

3. Analysis

Let (xalg , p, α) denote the allocation, the prices and the MBB ratios returned by the algo-
rithm. Let xopt denote the integral allocation that maximizes the NSW. Recall that xalg is
γ-p-EF1 with γ = 4ε, and inequality (3) holds for every i. We scale all the utilities of agent
i and its utility cap by a factor of 1/αi, i.e., we replace ui,j,` by ui,j,`/αi and ci by ci/αi.
We call the valuations before rounding and scaling the original valuations, the ones after
rounding up to powers of r the rounded valuations, and the ones after rounding and scaling
the scaled valuations. The scaling does not change the integral allocation maximizing NSW.
Inequality (3) becomes

u
i,j,m(j,xalgi )+1

pj
≤ 1 ≤

u
i,j,m(j,xalgi )

pj
, (5)

i.e., the goods allocated to agent i have a utility-to-price ratio of one or more, and the goods
that are not allocated to agent i have a utility-to-price ratio of one or less. Also, the value
of bundle xi for agent i is now equal to its utility for agent i:

Pi(x
alg
i ) = ui(x

alg
i ) =

∑
j

∑
1≤`≤m(j,xalgi )

ui,j,`. (6)

In the lemma below, we establish that xopt is an r-approximately Pareto-optimal allocation
for uncapped original valuations.
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Lemma 6. Let ui be the scaled valuations. Then we have:

1. xalg maximizes the uncapped social welfare, i.e., xalg = arg maxx
∑

i ui(xi).

2.
∑

i ui(x
opt
i ) ≤∑i ui(x

alg
i ).

3. xalg is Pareto-optimal for uncapped, rounded valuations.

4. Let uorig be the original valuations (unrounded and unscaled). Then for any integral

allocation y of the goods,
∑

i u
orig
i (yi)/αi ≤ r ·

∑
i u

orig
i (xalgi )/αi.

5. xalg is r-approximately Pareto-optimal for uncapped original valuations.

Proof. For Part 1, let xSW be the allocation that maximizes the uncapped social welfare for
the scaled valuations. We can obtain xSW from xalg by moving copies of goods as follows.
Set x ← xalg . Consider any good j. As long as the multiplicities of j in the bundles of x
and xSW are not the same, identify two agents i and k, where xi contains more copies of j
than xSWi and xk contains fewer copies of j than xSWk . Move a copy of j from i to k.

Taking a copy of good j from agent i makes the social welfare drop by at least pj , but
assigning this copy to agent k raises the social welfare by at most pj . Thus the social welfare
cannot go up by reassigning. This proves Part 1.

Parts 2 and 3 are obvious consequences of Part 1. Note that scaling does not affect
Pareto-optimality, thus Part 3 also holds for the (unscaled) rounded valuations.

For Part 4, we observe that uorig
i (yi)/αi ≤ ui(yi) since each original non-zero utility is

rounded up to the next power of r,
∑

i u
orig
i (yi)/αi ≤

∑
i ui(yi) ≤

∑
i ui(x

alg
i ) by Part 2,

and ui(x
alg
i ) ≤ r · uorig

i (xalgi )/αi.
Part 5 follows from combining Parts 3 and 4.

We remark that the main insights of Lemma 6 refer to scaled valuations – for example,
xalg does not maximize social welfare for the unscaled, rounded valuations.

Next, we focus on NSW, and ui always refers to the scaled valuation of agent i. Let Nc

and Nu be the set of capped and uncapped agents in xalg , and let c := |Nc|, thus n−c = |Nu|.
We number the uncapped agents such that u1(xalg1 ) ≥ u2(xalg2 ) ≥ . . . ≥ un−c(x

alg
n−c). Let

L := un−c(x
alg
n−c) be the minimum utility attained by an uncapped agent. The capped

agents are numbered n − c + 1 to n. A crucial component of the analysis is to define an
auxiliary problem and a further relaxed problem that facilitate bounding of NSW(xopt) and
NSW(xalg).

3.1 Auxiliary Problem

We define an auxiliary problem with
∑

j kj distinct goods and one copy of each good. The

goods are denoted by triples (i, j, `), where 1 ≤ ` ≤ m(j, xalgi ). The utility of good (i, j, `)
is uniform for all agents and is equal to ui,j,`. Formally,

v∗,(i,j,`) = ui,j,`, (7)

where v is the utility function for the auxiliary problem. The cap of agent i is ci. Since
v is uniform over all agents, we can write v(xi) instead of vi(xi). The capped utility of xi
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for agent i is v̄i(xi) = min(ci, v(xi)). Note that v is uniform, but v̄ is not. Let xoptaux be a
NSW-optimal allocation for the auxiliary problem.

Lemma 7. NSW(xopt) =
(∏

i ūi(x
opt
i )
)1/n

≤
(∏

i v̄i(x
optaux
i )

)1/n
= NSW(xoptaux ).

Proof. We interpret xopt as a feasible allocation x̂ for the auxiliary problem as follows. For
each good j, every agent i is allocated m(j, xopti ) goods with triples (∗, j, ∗) in x̂i, while these

goods must include all goods with triples {(i, j, `) | 1 ≤ ` ≤ min(m(j, xopti ),m(j, xalgi ))}. Due
to the construction of v in (7) and inequality (5), we have ui(x

opt
i ) ≤ v(x̂i) for all i, and

hence NSW(xopt) ≤ NSW(x̂) ≤ NSW(xoptaux ).

3.2 Relaxed Auxiliary Problem

By (6) and the definition of γ-p-EF1, for any agent i, there exists bi ∈ xalgi such that

ui(x
alg
i − bi) ≤ (1 + γ)L. (8)

Clearly, ui(x
alg
i −bi) = ui(x

alg
i )−u

i,bi,m(bi,x
alg
i )

. Note that there might be multiple choices of

bi ∈ xalgi such that (8) holds. When this happens, we can use any of such choices arbitrarily
for the construction below.

Let B = { (i, bi,m(bi, x
alg
i )) ; 1 ≤ i ≤ n } be a set of goods in the auxiliary problem. We

now consider allocations for a relaxation of the auxiliary problem, which allows partially
fractional allocation: the goods in B must be allocated integrally, but the other goods can be
assigned fractionally. For convenience of notation, let gi denote the good (i, bi,m(bi, x

alg
i ))

in the auxiliary problem. The following lemma is crucial for the analysis.

Lemma 8. There is a NSW-optimal allocation for the relaxed auxiliary problem, in which
every good gi is allocated to agent i.

Proof. Assume otherwise. Among the allocations maximizing Nash social welfare for the
relaxed auxiliary problem, let xoptrel be the one that maximizes the number of agents i that
are allocated their own good gi.

Assume first that there is an agent i who is allocated no good in B. Then gi is allocated
to some agent k different from i. Since bi ∈ xalgi , v(gi) = u

i,bi,m(bi,x
alg
i )
≤ ci; this inequality

holds since utilities ui,∗,∗ are capped at ci during initialization. We move gi from k to i

and min(v(gi), v(xoptreli )) value from i to k. This is possible since only divisible goods are

allocated to i. If we move v(gi) from i to k, the NSW does not change. If v(gi) > v(xoptreli ),

then ci ≥ v(gi) > v(xoptreli ), and hence the product v̄i(xi) · v̄k(xk) changes from

min(ci, v(xoptreli )) ·min(ck, v(xoptrelk ))

= v(xoptreli ) ·min(ck, v(xoptrelk − gi + gi))

= min(ck · v(xoptreli ), v(xoptrelk − gi) · v(xoptreli ) + v(gi) · v(xoptreli )) (9)

to

min(ci, v(gi)) ·min(ck, v(xoptrelk − gi) + v(xoptreli ))

= v(gi) ·min(ck, v(xoptrelk − gi) + v(xoptreli ))

= min(ck · v(gi), v(xoptrelk − gi) · v(gi) + v(xoptreli ) · v(gi)). (10)
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The arguments of the min in (10) are componentwise larger than those of the min in (9).
We have now modified xoptrel such that the NSW does not decrease, but the number of
agents owning their own good increases. The above applies as long as there is an agent
owning no good in B.

Next, assume every agent i owns a good in B, but not necessarily gi. Let i be such that
v(gi) is the largest among all goods gi that are not allocated to its own agent. Then gi is
allocated to some agent k different from i. The value of the good g` allocated to i is at most
v(gi) since ` 6= i and by the choice of i. We move gi from k to i and min(v(gi), v(xoptreli ))
value from i to k. This is possible since v(g`) ≤ v(gi) and all other goods assigned to i are
divisible. Following the same argument in the last paragraph, we have now modified xoptrel

such that the NSW does not decrease, but the number of agents owning their own good
increases. We continue in this way until gi is allocated to i for every i.

3.3 Approximation Ratio Analysis

Let xoptrel be an optimal allocation for the relaxed auxiliary problem in which every good
gi ∈ B is allocated to agent i. We will use NSW(xoptrel ) to upper bound NSW(xopt).

Recall that L denotes the minimum utility of an uncapped agent at allocation xalg . Let
α > 0 be the real number such that

αL = min{ v(xoptreli ) ; v(xoptreli ) < ci } (11)

is the minimum utility of any agent that is uncapped at allocation xoptrel . Let α = ∞ if
every agent is capped in xoptrel . Let Noptrel

c and Noptrel
u be the set of capped and uncapped

agents in xoptrel . Let h be such that uh(xalgh ) > αL ≥ uh+1(xalgh+1).

Lemma 9. We have the followings:

1. For i ≤ h, v(xoptreli ) ≤ ui(xalgi ).

2. For all i, ui(x
alg
i ) ≤ v(xoptreli ) + (1 + γ)L.

3. For i ∈ Nu ∩Noptrel
c , ci ≤ αL and i 6∈ [h].

Proof. We first prove Part 1. Consider any i ≤ h. If v(xoptreli ) ≤ αL, then v(xoptreli ) ≤ αL <
uh(xalgh ) ≤ ui(x

alg
i ). If v(xoptreli ) > αL, then α < ∞ and hence Noptrel

u is non-empty. We

claim that xoptreli = {gi}. Assume otherwise, then some divisible goods are also assigned to

i. We can move some of them to an agent k ∈ Noptrel
u where v(xoptrelk ) = αL. This increases

the NSW, a contradiction. Then the claim implies v(xoptreli ) = v(gi) ≤ ui(xalgi ).

For Part 2, it holds since gi ∈ xoptreli , and hence by Inequality (8), we have ui(x
alg
i ) =

ui(x
alg
i − bi) + ui(bi) ≤ (1 + γ)L+ v(gi) ≤ (1 + γ)L+ v(xoptreli ).

Finally, we prove Part 3. If Noptrel
u is empty, then α = ∞, so Part 3 holds trivially.

Otherwise, suppose there is i ∈ Nu ∩Noptrel
c , such that ci > αL. If xoptrel assigns divisible

goods to i, then we can move some of them to k ∈ Noptrel
u where v(xoptrelk ) = αL. This

increases the NSW, a contradiction. Thus xoptreli consists only of gi. But then v(gi) ≤
ui(x

alg
i ) < ci, so i does not belong to Noptrel

c , a contradiction. This shows ci ≤ αL. Then

also i 6∈ [h] for otherwise ci < ui(x
alg
i ) and hence i ∈ Nc, a contradiction.
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In the next lemma, we apply Lemma 9 to bound NSW(xopt) from above via NSW(xoptrel ).
To proceed, we point out a simple fact. The set of agents N can be partitioned into the
following three subsets:

N = [h] ∪
(
Nc ∪ (Nu ∩Noptrel

c )
)
∪
(
Nu \ ([h] ∪Noptrel

c )
)
. (12)

Moreover, the size of the last subset is |Nu| −h− |Nu ∩Noptrel
c | = n− c−h− |Nu ∩Noptrel

c |.

Lemma 10.

NSW(xopt) ≤ NSW(xoptrel ) ≤

(αL)n−c−h−|Nu∩N
optrel
c | ·

∏
i∈Nc∪(Nu∩Noptrel

c )

ci ·
∏

1≤i≤h
ui(x

alg
i )

 1
n

.

Proof. We partition the agents in N according to (12). For the agents in the first group

i ∈ [h], we have v(xoptreli ) ≤ ui(x
alg
i ) from Lemma 9. This takes care of the last product

term. Since v̄(xoptreli ) ≤ ci for any i and in particular for the agents in the second group,
this takes care of the middle product term.

Now we are left with the first product term for the agents in the third group. For
i ∈ Nu \ ([h] ∪ Noptrel

c ), note that i ∈ Noptrel
u , hence v(xoptreli ) ≥ αL by (11). On the

other hand, since i is in Nu but not in [h], we have v(gi) ≤ ui(x
alg
i ) ≤ αL. Hence all

value in v(xoptreli ) strictly above αL would be due to fractional goods. These fractional

goods can be reassigned to an agent i′ ∈ Noptrel
u with v(xoptreli′ ) = αL (such i′ exists due

to (11)) to strictly improve the NSW, a contradiction. Thus, we conclude that for the

agents i ∈ Nu \ ([h]∪Noptrel
c ), we have v(xoptreli ) = αL. This takes care of the first product

term.

Finally, we need to bound NSW(xalg) from below. We consider allocations x for the
auxiliary problem that agree with xalg for the agents in Nc ∪ [h], and reassign the value∑

i∈Nu\[h] ui(x
alg
i ) fractionally. Note that for any i ∈ Nu \ [h], L ≤ ui(x

alg
i ) ≤ min(ci, αL).

The former inequality follows from i ∈ Nu and the latter inequality follows from the defi-
nition of h and i ∈ Nu. We reassign value so as to move ui(xi) towards the bounds L and
min(ci, αL). As long as there are two agents whose values are not at one of their bounds,
we shift value from the smaller to the larger. This decreases NSW. We end when all but
one agent have an extreme allocation, either L or min(ci, αL). One agent ends up with an
allocation βL with β ∈ [1, α].

By (12), Nu \ [h] is the disjoint union of Nu ∩Noptrel
c and Nu \ ([h] ∪Noptrel

c ). By Part

3 of Lemma 9, for any agent i ∈ Nu ∩ Noptrel
c , ci ≤ αL. Also, since Nu \ ([h] ∪ Noptrel

c ) is

a subset of Noptrel
u , for any agent i in this set, αL ≤ ci due to (11). Write Nu ∩Noptrel

c as
S ∪ T , where the agents i ∈ T end up at ci and the agents in S end up at L. Also let s
and t be the number of agents in Nu \ ([h]∪Noptrel

c ) that end up at L and αL respectively.
Then

NSW(xalg) ≥

∏
i∈Nc

ci ·
∏

1≤i≤h
ui(x

alg
i ) · Ls · (αL)t · (βL) ·

∏
i∈T

ci · L|S|
1/n

.
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Note that n− c− h = s+ t+ 1 + |S|+ |T | = s+ t+ 1 + |Nu ∩Noptrel
c |. By Lemma 10,

NSW(xopt)

NSW(xalg)
≤
(
αs · α

β
·
∏
i∈S

ci
L

)1/n

≤

(sα+ α
β +

∑
i∈S

ci
L

s+ 1 + |S|

)s+1+|S|
1/n

,

where for the second inequality we apply the arithmetic and geometric means inequality.
Following the proof of Lemma 10, the total value allocated by xoptrel to the agents in

Nu \ [h] is (s+ t+1)αL+
∑

i∈S∪T ci. On the other hand, the total value allocated by xalg to
the agents in Nu \ [h] is sL+ tαL+βL+

∑
i∈T ci+ |S|L on the agents in Nu \ [h]. Moreover,

by Part 2 of Lemma 9, for each i ∈ Nc ∪ [h], we have ui(x
alg
i )− v(xoptreli ) ≤ (1 + γ)L. Thus,

0 =
∑
i∈N

ui(x
alg
i )− v(xoptreli ) ≤ (|Nc|+ h)(1+γ)L+

(
sL+ tαL+ βL+

∑
i∈T

ci + |S|L
)

−
(

(s+ t+ 1)αL+
∑
i∈S∪T

ci

)
,

and hence

(s+ t+ 1)αL+
∑
i∈S∪T

ci ≤ (|Nc|+ h)(1 + γ)L+ sL+ tαL+ βL+
∑
i∈T

ci + |S|L.

After rearranging, dividing by L and adding α/β on both sides,

sα+
α

β
+
∑
i∈S

ci
L
≤ (1 + γ)(|Nc|+ h) + s+ |S|+ α

β
+ β − α

≤ (1 + γ)(|Nc|+ h) + s+ |S|+ 1 ≤ (1 + γ)n.

Note that β + α/β − α ≤ 1 for β ∈ [1, α], since the expression is one at β = 1 and β = α
and the second derivative as a function of β is positive. Thus,

NSW(xopt)

NSW(xalg)
≤
((

(1 + γ)(|Nc|+ h) + s+ |S|+ 1

s+ 1 + |S|

)s+1+|S|
)1/n

≤
(

(1 + γ)n

s+ 1 + |S|

)(s+1+|S|)/n
≤ ee−1/(1+γ)

,

since ((1+γ)δ)1/δ as a function of δ attains its maximum for δ = 1
(1+γ)e

1/(1+γ). The value of

the maximum is exp(exp(−1/(1 + γ))); when γ ↘ 0, this value tends to e−1/e ≈ 1/1.44467.

Theorem 2. Suppose ε ∈ (0, 1/4], γ = 4ε, xalg is the allocation computed by the algorithm
for the rounded valuations, and xopt is an allocation maximizing Nash social welfare for the
original valuations. Then

NSW(xopt)

NSW(xalg)
≤ (1 + γ/4) · ee−1/(1+γ)

.
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3.4 Polynomial Running Time

Recall that n is the number of agents, there are kj copies of good j, and m =
∑

j kj is the to-
tal number of indivisible goods (i.e., all copies of all distinct goods). We define U as the ratio
of the maximum to minimum non-zero utility, i.e., U := maxi,j,k ui,j,k/mini,j,k:ui,j,k 6=0 ui,j,k.

Our analysis follows Barman et al. (2018) with one crucial difference. Lemma 12 is new.
For its proof, we need the revised definition of β3.

Lemma 11. The value of the least spending uncapped agent is non-decreasing.

Proof. This is clear for price increases. Consider a sequence of swaps along an improving
path P = (i = a0, g1, a1, . . . , gh, ah), where the agent ah loses a good, the agents a`, h

′ <
` < h, lose and gain a good, and the agent ah′ gains a good. By Lemma 2, all agents a`
with h′ < ` ≤ h have a value of at least (1+ε)Pi(xi) after the swap. Also the value of agent
ah′ does not decrease.

Lemma 12. For any agent k, let jk be a highest price good in xk. Then maxk Pk(xk −
jk) does not increase in the course of the algorithm as long as this value is above (1 +
ε) minuncapped i Pi(xi). Once maxk Pk(xk − jk) ≤ (1 + ε) minuncapped i Pi(xi), the algorithm
terminates.

Proof. We first consider price increases and then a sequence of swaps.

Consider any price increase which is not the last. Such price increase is performed in
lines 18–24 of Algorithm 1. Then β3 > min(β1, β2, β4). Let i and h be the least uncapped
spender before and after the price increase respectively. Let q be the price vector after the
increase and Qi(xi) be the agent i’s value at q. Then Qh(xh) ≤ Qi(xi) ≤ rQh(xh).

Since there is no improving path starting from agent i, for any k ∈ S, we have Qk(xk −
jk) ≤ (1 + ε)Qi(xi) ≤ (1 + ε)rQh(xh). For the agent k 6∈ S defining β3, we have

Qk(xk − jk) = Pk(xk − jk) = β3(1 + ε)rPi(xi) ≥ (1 + ε)rQi(xi) ≥ (1 + ε)rQh(xh);

we used the equality r = 1 + ε and the inequality Qi(xi) = βPi(xi) ≤ β3Pi(xi) in this
derivation. Hence maxkQk(xk − jk) = maxk Pk(xk − jk).

Consider next a sequence of swaps. We have an improving path from i to k, say P =
(i = a0, g1, a1, . . . , gh, ah = k). Let x′ be the allocation after the sequence of swaps. Then
minj Pk(x

′
k−j) ≤ minj Pk(xk−j) since k loses a good. Also, minj P`(x

′
`−j) ≤ (1+ε)Pi(xi)

for all ` ∈ [0, h− 1] by Lemma 2.

Lemma 13. The number of subsequent iterations with no change of the least spending
uncapped agent and no price increase is bounded by n2m.

Proof. Let i be the least spending agent. To have no price increase, every iteration must
find an improving path starting from i. We count for any other agent k, how often the
improving path can end in k. For each fixed length of the improving path, this can happen
at most m times (for details see Barman et al. (2018)); the argument is similar to the
argument used in the strongly polynomial algorithms for weighted matching (Edmonds and
Karp, 1972).
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Lemma 14. If the least spending uncapped agent changes after a price increase, the value
of the old least spending uncapped agent increases by a factor of at least r.

Proof. The least spending uncapped agent changes if β = β4 and β4 is at least r. So Pi(xi)
increases by at least r.

Theorem 3. The number of iterations is bounded by n3m2 logr(mU).

Proof. Divide the execution into two parts. In the first part, there are agents that own no
good, and in the second part every agent owns at least one good and hence all the Pi(xi)
are non-zero.

In any iteration of the first part Pi(xi) = 0, where i is a least spending agent. A shortest
improving path P = (i = a0, g1, a1, . . . , gh, ah) starting in i visits agents a1 to ah−1 owning
exactly one good and ends in agent ah owning more than one good. The sequence of swaps
will take away gh from ah and assign gi+1 to ai for 0 ≤ i < h. Since every price increase
will grow S by either a good or an agent, an improving path will exist after at most n+m
iterations. Since there are at most n agents that own no good, there are only O(n(n+m))
iterations in the first part.

We come to the second part. Divide its execution into maximum subsequences with the
same least spender. Consider any fixed agent i and the subsequences where i is the least
spender. At the end of each subsequence, i either receives an additional good, or there is a
price increase. In the latter case, Pi(xi) is multiplied by at least r.

Consider the subsequences between price increases. At the end of a subsequence i
receives an additional good. It may or may not keep this good until the beginning of the
next subsequence. But whenever i loses a good via swapping, the value of i remains at least
r times the value of the least spender at that time. By Lemma 11, the value of i is at least
r times of her value in the previous subsequence.

Together with Lemma 13, we have shown: After at most m · n2m iterations with i
being the least spender, Pi(xi) is multiplied by a factor r. Thus there can be at most
n2m2 logr(mU) such iterations. Multiplication by n yields the bound on the number of
iterations.

3.5 Approximate Envy-Freeness Up to One Good

The allocation computed by our algorithm maximizes NSW up to a factor of 1.445. By
Lemma 5, it also gives any uncapped agent i the guarantee that minj∈xk Pk(xk − j) ≤
(1 + 4ε)Pi(xi) for every other agent k. This guarantee is not meaningful for agent i as
the left hand side is in terms of the utility for agent k. We now show that it implies
minj∈xk ui(xk − j) ≤ (2 + 4ε) · ui(xi), i.e., the utility for i of k’s bundle minus one good
is essentially bounded by twice the utility of i’s bundle for i. The proof considers the
additional utility for i of the goods that k has in excess of i up to one good. This additional
utility is bounded by (1 + ε)ui(xi). If there is only one copy of each good, xk and xi are
disjoint and hence any copy of a good in xk is in excess of i’s possession of the same good.

Theorem 4. The allocation computed by the algorithm satisfies minj∈xk ui(xk − j) ≤ (2 +
4ε) · ui(xi) for any agent k and any uncapped agent i.
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Proof. Let g be such that Pk(xk − g) ≤ (1 + 4ε)Pi(xi). Then

ui(xk − g) ≤ ui(xi ∪ xk − g) (more never harms)

= ui(xi) +
∑
j

m(j,xk∪xi−g)∑
`=m(j,xi)+1

ui,j,`

≤ ui(xi) +
∑
j

m(j,xk∪xi−g)∑
`=m(j,xi)+1

αipj since ui,j,`/pj ≤ αi for ` > m(j, xi)

= ui(xi) +
∑
j

m(j,xk−g)∑
`=1

αipj

≤ ui(xi) +
∑
j

m(j,xk−g)∑
`=1

αi
uk,j,`
αk

since uk,j,`/pj ≥ αk for k ≤ m(j, xk)

= ui(xi) + αiPk(xk − g) definition of Pk(xk − g)

≤ ui(x) + αi(1 + 4ε)Pi(xi) since Pk(xk − g) ≤ (1 + 4ε)Pi(xi)

= (2 + 4ε)ui(xi) since ui(xi) = αiPi(xi).

For the case of only a single copy per good, minj∈xk uk(xk−j) ≤ (1+ε)ui(xi) was shown
by Barman et al. (2018). We do not know whether the factor 2 in the theorem above is
best possible. We show in Section 4.3 that a factor larger than 1.2 is necessary.

4. Extensions

In this section, we present several extended results about our algorithm.

4.1 A Lower Bound on the Approximation Ratio of the Algorithm

We show that the approximation ratio of the algorithm for NSW is no better than a ratio
of 1.440. Let k, s and K be positive integers with K ≥ k which we fix later. Consider the
following instance. We have h = s(k− 1) goods of value K and n = h+ s goods of value 1.
There is one copy of each good. The number of agents is n, and all agents value the goods
in the same way.

The algorithm may construct the following allocation. There are h agents that are
allocated a good of value 1 and a good of value K, and there are s agents that are allocated
a good of value 1. This allocation can be constructed during initialization. The prices are
set to the values and the algorithm terminates.

The optimal allocation will allocate a good of value K to h players and spread the
h + s = sk goods of value 1 across the remaining s agents. So s agents get value k each.
Thus

NSW(xopt)

NSW(xalg)
=

(
Khks

(K + 1)h

)1/(h+s)

=

((
K

K + 1

)(k−1)s

ks

)1/ks

=

(
K

K + 1

)(k−1)/k

k1/k.
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The term involving K is always less than one. It approaches 1 as K goes to infinity.
The second term k1/k has it maximal value at k = e. However, we are restricted to
integral values. We have 21/2 = 1.41 and 31/3 = 1.442. For k = 3, (K/(K + 1))2/3 =
exp(2

3 ln(1− 1/(K + 1))) ≈ exp(− 2
3(K+1)) ≈ 1− 2

3(K+1) . So for K = 666, the factor is less

than 1− 1/1000 and therefore NSW(xopt)/NSW(xalg) ≥ 1.440.

4.2 Certification of the Approximation Ratio

How can a user of an implementation of the algorithm be convinced that the solution
returned has a NSW no less than 1/1.445 times the optimum? She may read this paper
and convince herself that the program indeed implements the algorithm described in this
article. This may be unsatisfactory; see McConnell et al. (2011). In this section, we describe
a simple certificate.

The algorithm returns an allocation xalg , prices pj for the goods, and MBB-ratios αi
for the agents. After scaling all utilities and the utility cap of agent i by αi, we have the
inequality (5). The user needs to understand that this scaling has no effect on the optimal
allocation. As in Section 3, we introduce the auxiliary problem with m =

∑
j kj goods and

one copy of each good. The agents have uniform utilities. The user needs to understand
that the NSW of the auxiliary problem is an upper bound (Lemma 7). We are left with the
task of convincing the user of an upper bound on the NSW of the auxiliary problem. We
assume that m ≥ n, for otherwise the optimal NSW is zero.

PSfrag replacements δ

c

u1 uh

1 h n− k + 1 n

Figure 2: The allocation constructed in the proof of Theorem 5. The dashed line above
agents 1 to n − k indicates the utility caps. The solid rectangles visualize the
values of the bundles.

Theorem 5. Let c1 ≥ c2 ≥ . . . ≥ cn be the utility caps of the agents, let u1 ≥ u2 ≥ . . . ≥ um
be the utilities of the m goods of the auxiliary problem. Let u0 := +∞, c0 := +∞ and cn+1 :=
0. Then there exist integers h, k satisfying h, k ≥ 0 and h + k ≤ n, such that by defining

δ(h, k) :=
(∑

h+1≤j≤m uj −
∑

n−k+1≤i≤n ci

)
/(n− h− k), we have cn−k+1 ≤ δ(h, k) < cn−k
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and δ(h, k) < uh. Then for any optimal allocation xoptaux for the auxiliary problem,

NSW(xoptaux ) ≤

 ∏
1≤i≤h

min(ci, ui) · (δ(h, k))n−h−k ·
∏

n−k+1≤i≤n
ci

1/n

.

The right hand side is illustrated in Figure 2.

Proof. First we verify the existence of h, k. Find the least k ≥ 0 such that cn−k+1 ≤
δ(0, k) < cn−k.

7 With this k, we can set h = 0 to guarantee that δ(h, k) < uh = +∞.8

There might be other possible values of h, k, which can be found by an exhaustive search.
We insist that the goods 1 to h are allocated integrally (when h = 0 this means no good

is allocated integrally), while allowing the remaining goods to be allocated fractionally.
Clearly, we cannot allocate more than ci to any agent, in particular, not to agents

n− k + 1 to n and to agents 1 to h. The optimal way to distribute value
∑

h+1≤j≤m uj to
agents h+ 1 to n is clearly to allocate δ each to agents h+ 1 to n− k which all have a cap
of more than δ and to the assign their cap to agents n − k + 1 to n. The goods u1 to uh
of value more than δ are best assigned to the agents with the largest utility caps. Assume
that two such goods, say u` and uk, are allocated to the same agent. Then one of the first
h agents is allocated no such good; let v be the value allocated to this agent. Moving uk
to this agent and value min(uk, v) from this agent in return, does not decrease the NSW.
Also, if any fractional goods are assigned in addition to the first h agents, we move them
to agents h+ 1 to n− k and increase the NSW. This establishes the upper bound.

The upper bound can be computed in time O(n2 + m). We conjecture that it can be
computed in linear time O(n+m). We also conjecture that the bound is never worse than
the bound used in the analysis of the algorithm. It can be better as the following example
shows. We have two uncapped agents and three goods of value u1 = 3, u2 = 1 and u3 = 1,
respectively. The algorithm may assign the first two goods to the first agent and the third
good to the second agent. The set B in the analysis of the algorithm (Section 3) consists of
the first good and the last good. Then ` = 1. The optimal allocation allocates 3 to the first
agent and 2 to the second agent. Thus αL = 2. The analysis uses the upper bound

√
4 · 2

for the NSW of the optimal allocation. The theorem above gives the upper bound
√

3 · 2;
note that h = 1, k = 0, and δ = 2.

4.3 Lower Bounds on Approximate Envy-Freeness up to One Copy

For the case of additive valuation functions and one copy of each good, the optimal NSW
allocation is EF1 as shown in Caragiannis et al. (2016). The allocation computed by the
BKV algorithm is also EF1. In this section, we show that these properties hold neither for
the multi-copy case nor for the capped case.

Let ε be a small positive real number, say ε = 0.01. Let r = 1 + ε, and let s be the
smallest power of r greater or equal to 2r2. Then 2 < s < 2.04. We first give an example for
the multi-copy uncapped case. There are two agents and two goods. Good 1 has 5 copies,

7. It is possible that k = 0 when, for instance, all caps are +∞. It is also possible that k = n when, for
instance,

∑m
j=1 uj �

∑
i∈N ci.

8. If every uj is tiny, m is huge and n is small, h has to be zero due to the constraint uh > δ(h, k).
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and good 2 has 2 copies. For the first agent, the utility vector for good 1 is (s, s, 0, 0, 0) and
for good 2 is (1, 0). For the second agent, the utility vector for good 1 is (s, s, s, 0, 0) and
for good 2 is (s, s). Then in the optimal NSW allocation x, the first agent is allocated two
copies of good 1 and none of good 2, while the second agent is allocated three copies of good
1 and two copies of good 2. For this allocation, NSW(x) = (2s · 5s)1/2 = 101/2s. Note that
allocating one copy of the second good to each agent gives a NSW of ((2s + 1) · 4s)1/2 =
(8s2 + 4s)1/2 < (10s2)1/2 since 4 < 2s. Clearly, in x the first agent envies the second
agent even after removing one copy (of either good) from the allocation of the second agent,
because u1(x2 − g) ≥ (2s+ 1) > 2s = u1(x1) for any choice of g.

Lemma 15. In the case of several copies per good, the allocation maximizing NSW is not
necessarily envy-free up to one copy.

What does the algorithm do? The initial assignment is equal to the optimal assignment
and sets p1 = p2 = s and α1 = α2 = 1. Agent 1 is the least spending uncapped agent. The
allocation is not ε-p-EF1, since P1(x1) = 2s and P2(x2) = 5s and ming∈x2 P2(x2 − g) = 4s.
The constraints on α1 are [0, 1] by the first good and [1/s, 1] by the second good. The tight
graph consists only of agent 1. We enter the else-case of the main loop with S = {1}. Then
β1 = s > 2, β2 = ∞, β3 = 4s/(2s · r2) = 2/r2 < 2 and β4 = r1+blogr 5/2c ≥ 5/2 ≥ β3. Thus
β = β3. We decrease α1to r2/2 ≈ 1/2 and terminate. Now P1(x1) = (2/r2) · 2s = 4s/r2

and hence (1 + 4ε)P1(x1) ≥ 4s = P2(x2 − g) = 4s. The optimal allocation is now 4ε-p-envy
free up to one copy.

We turn to possible improvements of Theorem 4. Since ming∈x2 u1(x2− g) = 2s+ 1 and
u1(x1) = 2s, in order to have ming∈x2 u1(x2 − g) ≤ (c + ε)u1(x1), we need c ≥ 1 + (1 −
2εs)/(2s) ≥ 1.2.

Lemma 16. With α1 = r2/2, α2 = s, p1 = p2, the optimal allocation in the example above
is 4ε-p-envy free up to one copy.

Lemma 17. Theorem 4 does not hold when the constant 2 is replaced by 1.2.

For the linear capped case, again we have two agents, and this time we have four goods
with one copy each. The utility vectors of both agents are (s, s, s, s), but the first agent
is capped at 3, while the second agent is uncapped. Then the optimal NSW allocation x
allocates one good to the first agent and three goods to the second agent for NSW(x) =
(s · 3s)1/2. Note that allocating 2 goods to each agent yields a NSW of (3 · 2s)1/2 < (3s2)1/2

since s > 2. In the optimal assignment, the first agent envies the second agent, even after
removing one good from the allocation of the second agent.

What does the algorithm do? It may construct the optimal assignment during initial-
ization; the prices of all four goods are set to s and both α-values are set to one. Agent 1 is
the least spending uncapped agent. The tight graph consists of the edges from agent 1 to
the goods owned by agent 2 and from these goods to agent 1. An improving path exists and
one of these goods is reassigned to agent 1. The algorithm terminates with an allocation in
which both agents own two goods.

Lemma 18. In the case of single copies per good but with utility caps, the allocation max-
imizing NSW is not necessarily envy-free up to one good.
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4.4 Large Markets

In this section, we show that the approximation guarantee of our algorithm can be improved
on large instances, in the sense that there are a large number of copies of goods, and no
copy yields a significant utility to any agent in the market. Precisely, we call a market
δ-large if ui,j,` ≤ δ · ui(G)/n, where G is the multiset of all copies of items, and thus
ui(G) =

∑
j

∑
1≤`≤kj ui,j,`.

For simplicity, we restrict to instances without utility caps. With utility caps, the
treatment becomes more clumsy, but does not give additional insights.

Theorem 6. Suppose δ < 1. For a δ-large market in which all non-zero utilities are powers
of r = 1 + ε,

NSW(xopt)

NSW(xalg)
≤ 1 + 4ε

1− δ .

Proof. Let (xalg , p, α) be the allocation, price vector, and scaling factors returned by the
algorithm. For simplicity we use x = xalg . We scale all utilities ui,∗,∗ by αi. We have

ui,j,m(j,xi)+1 ≤ pj ≤ ui,j,m(j,xi)

for all i and j. Let U =
∑

i ui(xi) =
∑

i

∑
j

∑
1≤`≤m(j,xi)

ui,j,`.

Let xopt be the allocation maximizing NSW. Then
∑

i ui(x
opt
i ) ≤ U by Lemma 7(a),

and hence NSW(xopt) ≤ ((U/n)n)1/n = U/n.

We next prove a lower bound on NSW(x). Note that ui(G) ≤ U due to Lemma 7(a).
Thus, ui,j,` ≤ δU/n.

For any i, we have Pi(xi) = ui(xi). Since the allocation returned by the algorithm is
4ε-p-envy-free up to one copy, we have ming∈xk uk(xk − g) ≤ (1 + 4ε)ui(xi) for every agent
k. Let gk be the good that minimizes the left hand side. Summing over all k yields∑

k

uk(xk)−
∑
k

uk(gk) ≤ (1 + 4ε)n · ui(xi),

and hence

ui(xi) ≥
U − n(δ/n)U

(1 + 4ε)n
=

1− δ
1 + 4ε

· U
n
.

Thus
NSW(xopt)

NSW(xalg)
≤ U/n

(
∏
i ui(xi))

1/n
≤ U/n((

1−δ
1+4ε · Un

)n)1/n
=

1 + 4ε

1− δ .

For a δ-large market where non-zero utilities are not powers of r = 1 + ε, we first round
the non-zero utilities up to the nearest power of r. After rounding, the market is δr-large.
Theorem 6 and Lemma 1 implies that the approximation guarantee is (1 + 4ε)r/(1− δr) ≤
(1 + 6ε)/(1− δ − δε) when ε ≤ 1/4 and δ < 4/5.
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5. The CG-Bound and the BKV-Bound are Equal

In this section, we restrict the discussion to the case of a single copy per good and no utility
caps, i.e., the standard case of additive utilities. We have n agents and m goods. Cole
and Gkatzelis (2018) and Barman et al. (2018) defined upper bounds on the NSW of any
integral allocation of the goods. We show that the bounds are equivalent.

Cole and Gkatzelis (2018) defined their upper bound via spending-restricted Fisher
markets: Each agent has one unit of money and each good has one unit of supply. Goods
can be allocated fractionally and xi,j is the fraction of good j allocated to agent i. A
solution to the market is an allocation x and a price pj for each good j such that

1. Each agent spends all her money i.e.,
∑

j xi,jpj = 1.

2. An agent i spends money only on goods with maximum bang-per-buck i.e., xi,j > 0
implies ui,j/pj = αi where αi = max` ui,`/p`.

3. Goods with price less than 1 ( low-price goods) are sold completely. Formally, let
Ss = {j | pj ≤ 1}. Then for all j ∈ Ss,

∑
i xi,j = 1.

4. Exactly one unit of money is spent on each good with price at least 1 (large good).
Formally, let S` = {j | pj > 1}. Then for all j ∈ S`,

∑
i xi,jpj = 1.

The last constraint is the spending constraint and gives the market its name. Cole and
Gkatzelis (2018) showed that the NSW of any integral allocation of goods to agents is at
most

CG-UB :=

∏
j∈S`

pj
∏
i

αi

1/n

.

The following bound is implicit in the work of Barman et al. (2018). For any scaling
vector α = (α1, . . . , αn), define uniform utilities uj by uj = maxi ui,j/αi. For a set S of
more than m− n goods, let

a(S) =

∑
j∈S uj

|S| − (m− n)
=

∑
j∈S uj

n− |S| ;

note that |S| − (m− n) = n− (m− |S|) = n− |S|. So a(S) is the amount per agent if the
total utility of the goods in S is distributed uniformly over n− |S| agents. Finally, let

Sα = {S ; |S| > m− n and uj > a(S) for j 6∈ S }.

Then the BKV-bound is defined as follows:

BKV-UB := min
α>0

min
S∈Sα

∏
j 6∈S

uj · a(S)n−|S| ·
∏
i

αi

1/n

.

Lemma 19. BKV-UB is an upper bound on the Nash social welfare of any integral alloca-
tion.
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Proof. Scaling the utilities of agent i by αi does not change the optimal allocation and
changes the NSW of any allocation by (

∏
i αi)

1/n. Replacing ui,j by uj = maxh uh,j for
every agent i can only increase NSW. Allowing to allocate the goods in S fractionally can
only increase NSW. Since S is such that uj > a(S) for j 6∈ S, the optimal partially fractional
allocation is to allocate each uj , j 6∈ S, to a distinct agent and to allocate a(S) to each one
of the remaining agents.

Lemma 20. For fixed α, the BKV-bound is minimized for S ∈ Sα satisfying uj > a(S) for
j 6∈ S and uj ≤ a(S) for j ∈ S. This S is unique.

Proof. Assume uh > a(S) for some h ∈ S. Let T = S − h. Then

(
uha(T )n−|T |

)1/(n−|S|)
< a(S),

since the LHS is the geometric mean of uh and n− |T | copies of a(T ) and the RHS is equal
to their arithmetic mean; note that (uh + (n− |T |)a(T ))/(n− |S|) = a(S).

We can determine S greedily. Start with S equal to the set of all goods. As long as
there is a j ∈ S such that uj > a(S), remove j from S. For9 such a j, a(S \ j) ≤ a(S)
and hence any candidate for removal stays a candidate for removal. So the removal process
always ends up with the same S. Also note that for |S| = n− 1, a(S) =

∑
j∈S uj ≥ uj for

all j ∈ S and hence the process stops before all goods are removed from S.

Lemma 21. BKV-UB ≤ CG-UB.

Proof. Consider a solution (xi,j , pj) to the spending-restricted Fisher market. The scaling
vector for the BKV-UB is now defined as αi = maxj ui,j/pj . Let ui,j = ui,j/αi be the scaled
utilities. Then ui,j ≤ pj and ui,j = pj whenever xi,j > 0. Let uj = maxi ui,j ; then uj = pj
since for every j, xi,j > 0 for at least one i. Since the total money spent is n, one unit is
spent on each good in S`, and pj is spent on good j ∈ Ss, we have

n =
∑
j∈Ss

pj + |S`|

and hence

a(Ss) =
u(Ss)

n− |Ss|
=

∑
j∈Ss pj

n− |S`|
= 1.

Since pj > 1 for j ∈ S` and pj ≤ 1 for j ∈ Ss, the BKV-UB is minimized for the set Ss ∈ Sα
and hence

BKV-UB ≤

∏
j∈S`

pj · a(Ss)
n−|S`| ·

∏
i

αi

1/n

=

∏
j∈S`

pj
∏
i

αi

1/n

= CG-UB.

9. Let k = n− |S|. Then a(S \ j) = (u(S)− uj)/(k − 1) ≤ u(S)/k = a(S) iff u(S) ≤ kuj iff a(S) ≤ uj .
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For a set S of more than m− n goods, let PS be the following minimization problem in
variables αi and uj .

minimize fS(α, u) :=
∑
j 6∈S

lnuj+(n− |S|) ln a(S) +
∑
i

lnαi

subject to uj ≥ ui,j/αi for all i and j

uj ≥ a(S) for j 6∈ S

If PS is feasible, let bS be the optimum objective value and let (αS , uS) be an optimum
solution. If S is the set of all goods, αi = 1 for all i and uj = maxi ui,j is feasible solution.
Let S∗ be such that (1) PS∗ is feasible, (2) bS∗ is minimum, and (3) among the S satisfying
the two constraints, S has largest cardinality.

Lemma 22. For S = S∗, uSj > a(S) for j 6∈ S, uSj ≤ a(S) for j ∈ S, and uSj = maxi ui,j/αi.

Proof. Assume first that uSh > a(S) for some h ∈ S. Consider T = S − h. Then (αS , uS) is
a feasible solution of PT and bT < bS by the proof of Lemma 20.

Assume next that uSh = a(S) for some h 6∈ S. Let T = S ∪h. Then (αS , uS) is a feasible
solution for PT and bT = bS , a contradiction to the choice of S.

Assume uSj > maxi ui,j/αi for some j. Since uSj > a(S) if j 6∈ S, we may decrease uSj ,
staying feasible and decreasing the objective.

Lemma 23. Let S = S∗. Then (αS , S) defines the BKV-bound.

Proof. Let (αBKV, SBKV) define the BKV-bound and let uBKV
j = maxi ui,j/α

BKV
i for all j.

Then (αBKV, uBKV) is a feasible solution of PSBKV and

fSBKV(αBKV, uBKV) =
1

n
ln BKV-UB.

Therefore

bS∗ ≤ bSBKV ≤ 1

n
ln BKV-UB.

Conversely, let S = S∗, let (αS , uS) be an optimal solution to PS , and let SαS be the
set minimizing the BKV-bound for αS Then SαS = S∗ by Lemma 22 and hence

1

n
ln BKV-UB ≤ bS∗ .

Lemma 24. CG-UB ≤ BKV-UB.

Proof. Let S = S∗ and let (αS , uS) be an optimal solution of problem PS . We have shown
above that (αS , S) defines the BKV-bound, and that uSj > a(S) for j 6∈ S, uSj ≤ a(S) for

j ∈ S, and uSj = maxi ui,j/αi. Let k = n− |S|.
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The KKT conditions are necessary conditions for the optimum. Let zi,j ≥ 0 for all i
and j, and yj ≥ 0 for j 6∈ S be the multipliers. Then we need to have (write ujαi ≥ ui,j for
the inequalities)

1/uSj =
∑
i

zi,jα
S
i + yj for j 6∈ S

1

a(S)
=
∑
i

zi,jα
S
i for j ∈ S

1/αSi =
∑
j

zi,ju
S
j for all i

zi,j > 0⇒ αSi u
S
j = ui,j for all i and j

yj > 0⇒ uSj = a(S) for all j 6∈ S.

Define pj = uSj /a(S) and xi,j = a(S)zi,jα
S
i and call pj the price of good j and xi,j the

fraction of good j allocated to agent i. The bang-per-buck ratio of agent i is

αi = max
j

ui,j
pj

=
αSi u

S
j

uSj /a(S)
= a(S)αSi .

We now rewrite and interpret the optimality conditions.

• Since uSj > a(S) for j 6∈ S, yj = 0 for j 6∈ S.

• The first condition becomes 1 =
∑

i xi,jpj , i.e., exactly one unit of money is spent on
each good j 6∈ S. Note that pj > 1 for such goods.

• The third condition becomes 1 =
∑

j xi,jpj , i.e., every agent spends exactly one unit
of money.

• The second condition becomes
∑

i xi,j = 1 for all j ∈ S, i.e. goods in S are completely
allocated, but not overallocated.

• xi,j > 0 implies zi,j > 0 which in turn implies that αSi u
S
j = ui,j . Hence ui,j/pj =

a(S)αSi = αi which means that good j is allocated to i only if it has the maximum
bang-per-buck ratio.

This shows that the pair (x, p) is a solution to the spending-restricted Fisher market and
the CG-bound for this solution is

CG-UB ≤
∏
j 6∈S

uSj
a(S)

·
∏
i

a(S)αSi =
∏
j 6∈S

uSj · a(S)n−|S| ·
∏
i

αSi = BKV-UB.

We have now shown the main theorem of this section.

Theorem 7. The CG-bound and the BKV-bound have the same value.
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6. Discussion

In this paper, we studied the problem of allocating a set of indivisible goods among agents
with CASC valuation functions. CASC is a natural elementary class capturing concavity or
submodularity. The CASC functions generalize additive functions and are a special case of
submodular functions. We presented a polynomial-time algorithm that approximates the
optimal NSW up to a factor of 1.445, which matches with the state-of-the-art approximation
factor for additive valuations. Furthermore, we showed several interesting extensions. For
example, we showed that the computed allocation satisfies EF1 up to a factor of 2 + ε, and
for instances without utility caps, it is also Pareto-optimal.

We conclude with two interesting open questions. First, there is a considerable gap in
the lower bound (1.069) on the approximation factor that is hard to achieve (see Garg et al.
(2019)) and the approximation factor of 1.445, even for the additive valuations. It will be
interesting to close this gap. Second, for the more general submodular valuations, Li and
Vondrák (2021) recently obtained a 380-approximation algorithm for the optimal NSW.
Clearly, the approximation factor is enormous. An exciting direction for future work is to
reduce the approximation factor for this class.
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